Foreign connections are formed in vitro by Aplysia californica interneuron L10 and its in vivo followers and non-followers.
نویسندگان
چکیده
Aplysia californica interneurone L10 forms a set of presynaptic connections with many postsynaptic 'follower' cells in the abdominal ganglion. These followers do not connect back to L10. The present study tests whether the direction and sign of these connections are obligatory and are reconstructed when neuronal processes regenerate in vitro. L10 was co-cultured with one of six different followers and two non-followers. 1. In vitro connections that preserve the sign of those formed in vivo were made by L10 onto neurones L11, L12 and L13. The connections consisted of inhibitory postsynaptic potentials (IPSPs) with characteristic fast and slow components. 2. In vitro connections that did not preserve the sign of connections found in vivo were made by L10 onto R15, R16 and L7. Neurones R15 and R16 receive excitatory inputs from L10 in vivo and L7 receives a dual-action input in vivo, with inhibition followed by excitation. A purely inhibitory connection from L10 was formed in vitro onto all these cells. 3. Connections that have never been observed in vivo in terms of both direction and sign were formed in vitro. Followers L7, L11, L12, L13 and R16 and non-follower L14A formed novel connections onto L10. All these connections were inhibitory and some were strong. For example, IPSPs with a magnitude of 20 mV were observed in L10 following a single action potential in L13. Our results show that identified Aplysia neurones can form stereotyped specific connections in vitro. The specificity is different from that in the intact ganglion. The ubiquity of novel connections suggests that restrictions imposed on synaptogenesis in the animal are distinct from those regulating synapse formation in culture.
منابع مشابه
Identified Aplysia neurons form specific chemical synapses in culture.
Identified neurons from the abdominal ganglion of the marine mollusc Aplysia californica make specific transmitter-mediated synapses in dissociated cell culture. The cholinergic interneuron L10 makes synapses in vitro with one group of its follower cells, the left upper quadrant cells, and these connections exhibit the features of these synapses in vivo when the postsynaptic cells are plated wi...
متن کاملGiant Aplysia neuron R2 reliably forms strong chemical connections in vitro.
The giant cholinergic neuron R2 of Aplysia was cultured in combination with identified neurons L11 and R15 and members of a group of left upper quadrant (LUQ) cells L2 to L6 from the abdominal ganglion. All of these neurons receive cholinergic input from other cells in vivo, but not from R2. In vitro, R2 reliably formed unidirectional chemical connections with these cells. Single action potenti...
متن کاملTransforming tonic firing into a rhythmic output in the Aplysia feeding system: presynaptic inhibition of a command-like neuron by a CpG element.
Tonic stimuli can elicit rhythmic responses. The neural circuit underlying Aplysia californica consummatory feeding was used to examine how a maintained stimulus elicits repetitive, rhythmic movements. The command-like cerebral-buccal interneuron 2 (CBI-2) is excited by tonic food stimuli but initiates rhythmic consummatory responses by exciting only protraction-phase neurons, which then excite...
متن کاملCircuits constructed from identified Aplysia neurons exhibit multiple patterns of persistent activity.
We have used identified neurons from the abdominal ganglion of the mollusc Aplysia to construct and analyze two circuits in vitro. Each of these circuits was capable of producing two patterns of persistent activity; that is, they had bistable output states. The output could be switched between the stable states by a brief, external input. One circuit consisted of cocultured L10 and left upper q...
متن کاملAn identified histaminergic neuron modulates feeding motor circuitry in Aplysia.
An identified histaminergic neuron, C2, in the marine mollusk Aplysia is a complex mechanoafferent which appears to contribute to the maintenance of food arousal by means of its synaptic connections to the metacerebral cell (MCC). Because C2 also has extensive synaptic outputs to neurons other than the MCC, we studied its possible motor functions. We identified several synaptic followers of C2 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 154 شماره
صفحات -
تاریخ انتشار 1990